
This approach makes pinpointing and correcting the problem at the
functional level much more efficient. Additionally, testbenchs created
for large designs may be unable to check all possible sub-interfaces
and can create the potential danger of the design malfunction in lower
level modules. Because assertions are bound to the low level modules
violations will always be reported, regardless of whether the testbench
sees the violation or not.

Differences between Simulation and Formal Verification
The main difference between the two methods is when they are
applied. Assertions when used with simulation are checking the
design block dynamically at the functional level early in the process.
Formal verification uses only a subset of these assertion rules
statically at the behavioral level after simulation is verified. Based on
the amount of time designers spend at the functional level and the
limitations with formal verification, checking assertions during
simulation offers an early indication of a potential problem and can
ultimately reduce the overall debugging time needed. Formal
verification further increases the thoroughness but without this early
indication, the corrections can take much longer or be missed entirely.

What is Assertion-based Verification (ABV)
Assertion-based verification is the convergence of design
and verification to create an improved design-for-verification
methodology. This methodology has been dormant for over a
decade in software development and is just now making its’
way into hardware design flows. Assertions are quite simply
design checks embedded into the module or IP to verify the
assumptions about how a specific block should operate, both
by itself and in relation to the surrounding design blocks.
They explicitly express all information about the
functional/behavioral nature of the block just as the designer
intended it to be used. This smarter methodology brings
together design and verification to improve both the code
and the verification process simultaneously. By
incorporating these assertion checks early (during coding),
designers will see value throughout the process of design,
integration, system simulation and tape out.

Why Assertion-based Verification
It is estimated that over 70 % of the design cycle for any new
device is spent in the verification process. As these designs
continue to grow in size and complexity the need for
improved verification
methods at the
 functional level
continues to grow
along with it. Im-
plementing assertions
as part of the design
process along side simulation
and formal verification will create
a higher quality design and speed
time-to-market. Simulating with assertions provides more
information, which can improve understanding about the
internal working of the design and reduce the number of
iterations. Whenever the design does not behave the way it
was intended or an assumption is broken, the assertion flags
the exact time and location of the problem.

ASSERTION-BASED VERIFICATION
AL

D
EC

, I
N

C

WWW.ALDEC.COM

All trademarks and registered trademarks are property of their respective owners.

Assertions Languages
There are currently several Assertion-based Verification languages available. Aldec
has implemented a large portion of the individual specification and will continue to
add additional support as ABV becomes an IEEE standard. The following is a brief
description of each:
• OpenVera™ Assertions (OVA) language has been donated to the public domain by
Synopsys™, it is based on VERA and provide comprehensive support for assertions.
• Property Specific Language (PSL) was donated by IBM® and is based on the Sugar
formal property language, PSL provides the most advanced and complex assertions
checking capability
• Accelera Open Verification Library (OVL) provides ready to use assertion functions
in the form of VHDL and Verilog HDL libraries.
• SystemVerilog is a next generation language standard based on many of the best
features of the SUPERLOG, VHDL, VERA, C, C++, OVA, PSL/Sugar languages,
added to the core Verilog HDL. SystemVerilog is aimed at becoming the next standard
approved by IEEE.

Riviera and Riviera-IPT support
Riviera and Riviera-IPT have the unique ability to utilize Assertion-based Verification
in the mixed language software simulator as well as in the hardware accelerator. The
assertion compiler from Aldec produces these module checks in the form of RTL code
added to the synthesizable portion of the design. Once assertions are implemented into
the design they can be verified at the behavioral (dynamic) level in the software
simulator, and at the structural (static) level in the hardware accelerator. In addit ion to
the improved verification time and flexibility
of using assertions for verification the
designer can utilize these checks during
design prototyping as well as in the final
product. Assertions used in prototyping
can detect any functional problems
in real time. They become part of the
design for monitoring the desired
signals and can flag an error or
exception whenever there
is a violation.

Additional Benefits of using ABV with Riviera and Riviera-IPT:

♦ Less Simulation Overhead
Because assertion support is built into Riviera’s simulation kernel less overhead exists
compared to using an interfaced 3rd party checker. This can equal a performance
improvement of over 20% when compared to the competition.

♦ Better than Testbench alone
Because assertions are part of the source code and describe the internal functionality of
the module they create a faster and better way to check the system. Implementing
assertions with a typical testbench creates improved system-level results by improving
the overall coverage with less effort.

♦ Better Debugging
Using assertions in a design flow can produce improved verification results earlier in
the cycle during simulation. This adds value by providing the exact location of the bug
quickly and concisely and with less effort than typical debug techniques.

WWW.ALDEC.COM

♦ Improved Design Re-Use
Assertions are quite simply
assumptions about how a specific
block should operate, both by itself
and in relation to the surrounding
design blocks. Because of this,
subsequent re-use of the specific
modules becomes much easier.

♦ Better Design Outsourcing
Because assertions provide an exact
blueprint and intended use of the
design module, outsourcing to other
team members becomes more reliable
and efficient.

♦ Design Monitoring
Assertions can remain in the final
ASIC or FPGA as part of a designer
specified monitoring system. Once
implemented these assertions can be
used to detect and react to protocol or
sequence errors.

Platform Support
• Sun Sparc running Solaris 7 or 8
• PC running Microsoft Windows
2000/NT/XP
• Linux kernel 2.4 (Red Hat 7.0 and
higher)

Industry Standard Support
IEEE
• VHDL 1076-87/93
• Verilog 1364-95/2001 (partial)
• VITAL 1076.4-95/2000
• SDF 1.0, 2.0, 3.0 and 4.0
• SystemVerilog (Q1 2004)

Interface Protocols
• Tcl/Tk
• PERL
• SWIFT (including LMTV and
MemPro)
• PLI
• VHPI + CHPI

The Design Verifi cat ion Company

2230 Corporate Circle
Henderson, NV 89074
United States
Phone: 702-990-4400
Fax: 702-990-4414
E-mail: info@aldec.com

All trademarks and registered trademarks are property of their respective owners.

